
OAuth Application Configuration

For a client application to be authenticated in ShopSite using OAuth, it must first be registered in the

ShopSite Back Office by going to Utilities -> Applications and clicking the Add button. Enter a name for

the application and check the boxes for the access permissions that the application should be granted.

Then click the Generate Key button.

The Access Grant screen displays the client credentials that are necessary for the application to be

authenticated when it requests access to protected data in ShopSite. Each of the items on this screen

needs to be copied and pasted into the client application configuration or saved in a securely protected

file for access at run time.

CAUTION: The secret key must always be safeguarded to prevent unauthorized use! It should never be

transmitted over the internet, including in e-mails, using an insecure connection. If the secret key is

believed to have been compromised, the current client credentials should be deleted immediately and

new credentials generated, which will include a new secret key.

RECOMMENDATION: For added security, the secret key in your application configuration should be in

encrypted form instead of clear text. Include code in your application to decrypt the key when it comes

time for the key to be used. Immediately after use, the application should erase the secret key and free

the memory.

The Edit button in Utilities -> Applications allows you to change the application name or the access grant

permissions. The client credentials are displayed as read-only; they cannot be changed.

Although you cannot change the Authorization URL directly, it will reflect any changes made to the

shopping cart SSL configuration. If the Authorization URL has changed, remember to update it in the

application configuration.

Requesting an Access Token

Each time a client application requires access to protected data in ShopSite, it must first obtain an access

token from the authorization server. The Authorization URL is used to make the request along with the

following query parameters in the HTTP request body using the “application/x-www-form-urlencoded”

format:

grant_type Value must be set to “authorization_code”.

code The authorization code obtained when the application was registered.

client_credentials The client id and a nonce* combined in the string format: “client id:nonce”.

This string is base64 encoded and saved as encoded credentials.

signature The result of an HMAC computed hash of the encoded credentials, signed with

the secret key, and then base64 encoded. The hash must be computed using

the SHA1 hashing algorithm.

*A nonce as used here is a randomly generated string of characters used to provide variability when

combined with other data to compute a hash or digest for authentication.

Example:

client id B9D3299B

authorization code MTQxMDZ8ZGViYmllfDJ8

secret key CCAB-DFB5-C73A-5228

nonce 80026bc7

client credentials B9D3299B: 80026bc7

encoded credentials QjlEMzI5OUI6ODAwMjZiYzc=

signature rfw0k21l9YdXl0r240Uw+3aa9A4=

POST /authorize.cgi HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=MTQxMDZ8ZGViYmllfDJ8&client_credentials=

QjlEMzI5OUI6ODAwMjZiYzc=&signature=rfw0k21l9YdXl0r240Uw+3aa9A4=

When the authorization server receives the above request from the client, it uses the authorization code

to look up the client information in the applications database. It then uses the nonce passed in the

client credentials along with the client id and secret key in the database to compute its own signature.

The computed signature is compared to the one passed by the client, and if they match, the server

downloads authorization information to the client, which is in JavaScript Object Notation (JSON) format.

Here is an example:

{

 "access_token" : "MTMwMjA5NjAyOHxkZWJiaWV8MnxCYWlsZXl8MjU2fA==",

 "token_type" : "MAC",

 "expires_in" : 30,

 "download_url" : "https://server.example.com/path/db_xml.cgi"

 "upload1_url" : "https://server.example.com/path/dbupload.cgi"

 "upload2_url" : "https://server.example.com/path/dbmake.cgi"

 "publish_url" : "https://server.example.com/path/generate.cgi"

}

The access token is opaque to the client and has meaning only to the resource server. It contains the

permissions and other information necessary to make protected data in ShopSite available to the client.

The token type identifies the message hashing scheme used for the token. “MAC” stands for Message

Authentication Code, or keyed hash.

The token expiration time is given in number of seconds. It is followed by the URLs that are to be used

for downloading, uploading, and publishing.

A routine named oauth_resource_access() is provided in the sample code to parse the JSON object and

to put each of the data elements in a RESOURCE data structure.

Requesting Data Access

After receiving an access token from the authorization server, the client application next prepares and

makes a request to the resource server to perform an upload, download, or publish operation.

Since the access token is a MAC token, it is necessary to assemble the query with the information

needed to create a signed message digest for MAC authentication. This process is described in the

following working document:

Hammer-Lahav, E., "HTTP Authentication: MAC Authentication", draft-hammer-oauth-v2-mac-token-02

http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02

Begin the query with the usual XML Programmatic Interface parameters. To download orders, for

example, start the query as:

 “clientApp=1&dbname=orders&version=10.2”

A new nonce is calculated along with a timestamp. You then add these to the query string along with

the access token.

Example:

access token MTMwMjA5NjAyOHxkZWJiaWV8MnxCYWlsZXl8MjU2fA==

nonce 503bb763

timestamp 1302101084

“clientApp=1&dbname=orders&version=10.2&token=MTMwMjA5NjAyOHxkZWJiaWV8MnxCYWlsZXl8M

jU2fA==×tamp=1302101084&nonce=503bb763”

If you are downloading orders and you need to have the payment information included in the download,

you must add the “pay=x” parameter to the query, where the value “x” is either “no_cvv” to not include

the CVV2 number or any other value to include it. CAUTION: The CVV2 number can be downloaded only

once, after which it is purged and is no longer accessible. The same rule applies when it is viewed in the

back office.

A secure SSL connection is required for payment information to be downloaded. Additionally, the client

application must have the proper access permissions granted.

If payment information has been encrypted with a merchant key, then this key must be included in the

query in order for the information to be decrypted when it is downloaded. The merchant key is stored

somewhere in a file on the local system. The content of this file is read into memory, base64 encoded,

and then added to the query using the “dkey” parameter name. In the sample code there is a routine

named addMerchantKeyToQuery() that shows how this is done.

After all of the required parameters have been added to the query, call the oauth_message_digest()

routine in the sample code to create a signed message hash. The input parameters are the request URL

(for uploading, downloading, or publishing), the query string, and the secret key. A signature is returned

in the output parameter. Add the signature to the query string and then submit the request to the

resource server.

Example:

POST /db_xm.cgi HTTP/1.1

Host: server.example.com

Content-Type: application/x-www-form-urlencoded

clientApp=1&dbname=orders&version=10.2&token=MTMwMjA5NjAyOHxkZWJiaWV8MnxCYWlsZXl8Mj

U2fA==×tamp=1302101084&nonce=503bb763&signature=LXIUwI9RSLqzd19GpOJnbO0hTQg=

If successful, the results of the operation are downloaded to the client. If the client then wishes to

perform another operation, it must go back to the authorization server and request another access

token.

Sample Code

Sample “C” code is provided to illustrate in more detail how OAuth authentication is done and how the

XML Programmatic Interface is used within OAuth. Included in the sample code are the following “C”

functions to perform the required data manipulation operations used in the examples:

oauth_encode(); // base64 encode a string

oauth_nonce(); // compute a nonce

oauth_signature(); // compute a HMAC hash and signature

oauth_message_digest() // create a MAC message digest from a given request URL

oauth_resource_access() // parse authorization information to access protected data

References:

OAuth Specifications: http://oauth.net/documentation/spec/

OAuth 2.0 Working Draft: http://tools.ietf.org/html/draft-ietf-oauth-v2-15

MAC Authentication: http://tools.ietf.org/html/draft-hammer-oauth-v2-mac-token-02

